木栓质的转录调控及其对环境的响应
doi: 10.7606/j.issn.1000-4025.20240439
周月 , 安永平 , 马蓉 , 王沛
西南民族大学 四川若尔盖高寒湿地生态系统国家野外科学观测研究站,草地资源学院,青藏高原研究院,成都 610041
基金项目: 国家自然科学基金项目(31802122,32360424) ; 四川省科技计划项目(2024NSFSC0310) ; 西南民族大学“双一流”项目(CX2023013)
Transcriptional regulation of suberin and its response to the environment
ZHOU Yue , AN Yongping , MA Rong , WANG Pei
Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041 , China
摘要
【目的】 木栓质是一种聚酯型生物聚合物,特异性沉积在植物的内皮层、周皮、种皮和伤口外表皮等组织中。作为植物与环境之间的屏障,木栓质通过控制水和溶质运输保护植物免受环境胁迫和病原侵袭。文章论述了木栓质生物合成的关键酶和转录因子,探讨了环境因子对木栓质合成和沉积的影响,并展望了未来研究方向。【评论】木栓质的调控涉及多种因素,包括关键酶[如β-酮脂酰-CoA合成酶(KCS)、脂肪酰基还原酶(FAR)、细胞色素P450酶(CYP家族)等]和转录因子(如MYB、NAC、WRKY等),环境因子也通过复杂的信号转导途径调控木栓质的生物合成与沉积。【展望】未来研究应聚焦木栓质生物合成的关键调控节点,尤其是在作物中探究影响木栓质物种差异性沉积的因素,并借助多组学等方法解析其运输、组装及后转录调控机制,有望为作物高养分利用和抗逆性遗传改良提供新策略。
Abstract
[Objective] Suberin is a polyester type biopolymer that specifically deposits in tissues such as the endodermis, periderm, seed coat, and wound epidermis of plants. Acting as a barrier between the plants and their environment, suberin controls the transport of water and solutes, protecting plants from environmental stresses and pathogenic invasion. This article reviews the key enzymes and transcription factors involved in suberin biosynthesis, and discusses the impact of environmental factors on suberin synthesis and deposition. The future research direction was prospected. [Reviews] The regulation of suberin involves various factors, including key enzymes such as β-ketoacyl-CoA synthase (KCS), fatty acyl reductase (FAR), cytochrome P450 enzymes (CYP family), and transcription factors such as MYB, NAC, WRKY. Environmental factors also regulate the biosynthesis and deposition of suberin through complex signal transduction pathways. [Prospect] Future research should focus on the key regulatory nodes of suberin biosynthesis, particularly exploring the factors that influence species-specific deposition of suberin in crops. By leveraging multi-omics approaches to elucidate its transport, assembly, and post-transcriptional regulation mechanisms, there is potential to provide new strategies for enhancing nutrient use efficiency and stress resistance in crop genetic improvement.
木栓质(suberin)是一种由聚芳香族结构域[poly(phenolic)domain,SPPD]和聚脂肪族结构域[poly(aliphatic)domain,SPAD]组成的亲脂性酚醛生物聚酯[1]。SPPD主要成分是羟基肉桂酸,包括对羟基肉桂酸、阿魏酸和香豆酸等;而SPAD主要由甘油和C16-C24的脂肪族单体组成,如伯醇、未被取代的脂肪酸、ω-羟基脂肪酸、αω-双羧基酸等[2]。这些单体在内质网上经氧化还原反应形成,通过酰基转移作用形成聚酯,并沉积于细胞壁内表面[3]
木栓质主要分布于植物的边界组织,如根的内皮层、外皮层、表皮和块茎周皮、种皮等,最广为人知的是马铃薯(Solanum tuberosum)块茎和栓皮栎(Quercus suber)的周皮[3]。木栓质的沉积在不同植物、组织和生长阶段有明显差异。例如,拟南芥(Arabidopsis thaliana)根内皮层木栓质以SPAD为主,而禾本科作物如水稻(Oryza sativa)和大麦(Hordeum vulgare)的SPPD含量较高;种皮和根的内外皮层的木栓质含量差异较大,根的初生发育阶段木栓质主要沉积在内皮层,而次生发育阶段沉积在周皮[3-5]
木栓质作为植物体内的疏水性屏障,控制物质运输,调节生长发育,并防止水分流失和病原体感染[6]。木栓质在内、外皮层沉积形成的片层状的结构称为木栓质片层,简称木栓层[7]。木栓质具有应激诱导性,植物能通过改变其组分和沉积来适应环境变化,从而抵御生物和非生物胁迫[3]。植物激素如乙烯和脱落酸在木栓质生物合成中起特定的调控作用[8]。木栓质沉积的激素依赖性是根系发育和抗逆的关键。
环境因子对生态和农业系统的健康至关重要。植物通过调整根系构型来感知土壤压力,而木栓质在不同环境下均具有可塑性,以适应干旱和盐胁迫等不利条件。木栓质的可塑性和保护功能不仅能减少根部水分外渗,还能阻止有毒溶质渗透到地上部。因此,研究植物在环境胁迫下木栓质的响应至关重要。本文综述了木栓质生物合成的关键酶和转录因子,并对不同环境条件下木栓质沉积的可塑性和保护功能进行了阐述;同时,针对今后木栓质研究的方向进行了初步探讨,旨在为植物抗逆性研究和作物遗传改良提供新的思路。
1 木栓质单体生物合成
木栓质前体在多种酶的作用下生成SPPD芳香族单体和SPAD脂肪族单体,这些单体经氧化还原反应形成聚酯被转运至特定位置沉积,形成屏障并发挥作用。在木栓质生物合成过程中涉及多种酶,包括脂肪酸延长酶复合体(FAE)中的β-酮脂酰-CoA合成酶(KCS)、脂肪酰基还原酶(FAR)、细胞色素P450酶(CYP家族)、羟基肉桂CoA转移酶(ASFT/HHT)、阿魏酰转移酶(FHT)、长链酰基CoA合成酶(LACSs)、甾醇葡糖基转移酶(CTB2)、甘油3-磷酸酰基转移酶(GPATs)、脂质转移蛋白(LTPs)等,如图1所示。
1.1 SPPD型单体
木栓质生物合成中,酚类单体合成类似于木质素前体的合成,涉及苯丙烷代谢途径中的多种酶,如苯丙氨酸解氨酶(PAL)、肉桂酸-4-羟化酶(C4H)、4-香豆酸CoA连接酶(4CL)、羟基肉桂酰CoA转移酶(HCT/THT)、4-香豆酰莽草酸/喹啉3′-羟化酶(C3′H)、咖啡酰CoA-O-甲基转移酶(CCoAOMT)、咖啡酸-O-甲基转移酶(COMT)、阿魏酸-5-羟化酶(F5H)、肉桂酰CoA还原酶(CCR)和肉桂醇脱氢酶(CAD)等。木栓质组装和沉积还涉及PRX、PER64、TPX1等过氧化物酶、RBOHF氧化酶和结构域蛋白ESB1[9]。芳香族单体的初始前体是苯基丙氨酸,其形成涉及肉桂酸和香豆酸等多个中间产物,最终产物为木质素[9]。凯氏带中是否存在木栓质仍存在争议[10]
1.2 SPAD型单体
SPAD型木栓质单体的初始前体是C16-C18脂肪酸,如棕榈酸(C16∶0)、硬脂酸(C18∶0)和油酸(C18∶1),它们在细胞质中合成后运输到内质网[11]。随后,脂肪酸延长酶复合体(FAE)参与碳链伸长,拟南芥的KCS1和FAE1在蜡质和木栓质的超长链脂肪酸(VLCFAs)合成中发挥关键作用[12]。KCS将C2亚基冷凝成酰基CoA就是VLCFAs生物合成的第一步。拟南芥的KCS2/DAISY参与根中脂肪族木栓质的合成,其突变体在VLCFAs合成方面存在缺陷[13]
ω-羟基脂肪酸和αω-双羧基酸是SPAD中的关键单体,由脂肪酸在细胞色素P450酶作用下羟基化形成。拟南芥中CYP86亚家族中的CYP86A1负责链长<C20的脂肪酸前体在ω位点的羟基化[14]。CYP86B1和CYP86B2则作为VLCFAs羟化酶,是木栓质中超长链饱和αω-双羧基酸单体的生物合成所必需的氧化酶[15]。CYP94亚家族也参与此过程,如印度红树(Avicennia officinalis)中的AoCYP94B1AoCYP94B3调节木栓质单体C16-ω-羟基酸、C16-αω-双羧基酸的合成[16-17]
脂肪醇也是木栓质SPAD的重要单体,由脂肪酰基CoA还原酶(FAR)将脂肪酸还原而成。拟南芥中的FARs家族包含8个成员,其中FAR5、FAR1和FAR4位于根内皮层细胞,分别负责C18∶0、C20∶0和C22∶0伯醇的合成[18]
脂肪酸代谢中长链酰基-CoA合成酶(LACSs)将脂肪酸转化为脂肪酸酰基CoA硫酯。LACS基因在拟南芥的根、茎、叶、花、萌发和幼苗等多个器官中表达,其中AtLACS2AtLACS3AtLACS9在根内皮层细胞中高度表达,可能参与木栓质脂质单体的合成,但AtLACS3AtLACS9在木栓质生物合成中的具体作用尚未明确[19]
1.3 酰基链和甘油合成
BAHD型酰基转移酶参与SPAD和SPPD化合物的酯化,将羟基肉桂酸与ω-羟基脂肪酸或ω-醇连接,形成木栓质前体[20]。该家族中,脂肪醇羟基肉桂酰转移酶(FHT)也参与此过程,过表达毛果杨(Populus trichocarpaPtFHT1的植株种子和根木栓质含量均显著增加[21]
1木栓质生物合成通路图
Fig.1Schematic diagram of suberin biosynthetic pathways
SPPD.聚芳香族结构域。SPPD单体合成所涉及酶:PAL.苯丙氨酸解氨酶;C4H.肉桂酸-4-羟化酶;4CL.4-香豆酸CoA连接酶;HCT.羟基肉桂酰CoA转移酶;C3′H.4-香豆酰莽草酸/喹啉3′-羟化酶;CCoAOMT.咖啡酰CoA-O-甲基转移酶;CCR.肉桂酰CoA还原酶;CAD.肉桂醇脱氢酶;F5H.阿魏酸-5-羟化酶;COMT.咖啡酸-O-甲基转移酶。
SPAD.聚脂肪族结构域。SPAD单体合成涉及酶:KCS.β-酮脂酰-CoA合成酶;FAR1、FAR4、FAR5.脂肪酰基还原酶(FAR);CYP86A1、CYP94、CYP86B1.细胞色素P450酶(CYP家族);LACSs.长链酰基CoA合成酶;GPATs.3-磷酸甘油酰基转移酶;BAHD.BAHD型酰基转移酶。
单体运输涉及酶:ABCGs.ATP结合盒转运蛋白G亚族;LTPs.脂质转移蛋白。
SPPD. Poly (phenolic) domain. Enzymes involved in SPPD monomer synthesis: PAL, phenylalanine ammonia-lyase. C4H, cinnamate-4-hydroxylase.4CL, 4-coumarate-CoA ligase. HCT, hydroxylcinnamoyl-CoA shikimate/quinate hydroxylcinnamoyl transferase. C3′H, 4-coumaroyl shikimate3′-hydroxylase. CCoAOMT, caffeoyl-CoA-O-methyltransferase. CCR, cinnamoyl-CoA reductase. CAD, cinnamoyl alcohol dehydrogenase. F5H, ferulate5-hydroxylase. COMT, caffeic acid O-methyltransferase.
SPAD. Poly (aliphatic) domain. Enzymes involved in SPAD monomer synthesis: KCS, β-ketoacyl-CoA synthase. FAR1, FAR4, FAR5, fatty acyl reductase (FAR) . CYP86A1, CYP94, CYP86B1, cytochrome P450 monooxygenases (CYP family) . LACSs, long-chain acyl-CoA synthetase. GPATs, glycerol 3-phosphate acyltransferase. BAHD, BAHD acyltransferase family.
Monomer transport involves enzymes: ABCGs, ATP-binding cassette. LTPs, lipid transfer protein.
3-磷酸甘油酰基转移酶(GPATs)家族介导甘油和长链脂肪族单体的酯化。拟南芥gpat5突变体幼根中脂肪族木栓质减少了50%,超长链(C20-C24)木栓质单体含量大幅减少,表明GPAT5参与根和种皮木栓质的酯化[22]
1.4 单体运输
以上木栓质前体合成后由不同的ATP结合盒转运蛋白G亚族(ABCGs)进行跨膜转运。其中ABCG1、ABCG2、ABCG6和ABCG20参与根系木栓质形成,其突变体表现出缺乏木栓质的性状[23]
脂质转移蛋白(LTPs)可能是木栓质单体向胞外输出的一种补充机制,质膜外的LTP可能促进疏水VLCFAs或其衍生物从细胞质输出[24]。LTPs参与植物对盐胁迫的响应,与ABA相互作用参与盐胁迫下豌豆根内皮层木栓质的沉积[25]AtLTP1-4在拟南芥冠瘿瘤中表达,其突变体改变了冠瘿瘤外皮的木栓质组成,表明AtLTP1-4参与木栓质的沉积[26],但LTP在木栓质前体输出中的直接作用仍待充分证明。
1.5 其他
UDP-葡萄糖——甾醇葡糖基转移酶(UGT)也参与木栓质合成,拟南芥ugt80B1突变体种子中脂肪族木栓质和类角质聚合物急剧减少[27]。玉米(Zea mays)中的ZmPAO是一种受发育调控的黄蛋白酶,转基因烟草(Nicotiana tabacum)中异位表达增强了伤口周围的木栓化[28]
2 木栓质的转录调控
2.1 MYB转录因子
MYB家族是植物中最大的转录因子家族,根据MYB结构域中相邻的重复序列可分为MYB1R、R2R3型和MYB3R 3个亚家族。大多数成员为R2R3型,其控制植物部分的次生代谢过程及细胞特性和命运[29]。研究发现,许多R2R3型MYB转录因子在木栓质调控中起关键作用,如表1所示。
2.1.1 正调控因子
转录因子MYB36正调控凯氏带合成基因CASP1PER64ESB1的表达,对根内皮层凯氏带形成至关重要,拟南芥myb36突变体根内皮层无法正确形成凯氏带结构及其屏障功能[30]。MYB36还参与木栓质的沉积,它与上游GRAS转录因子SHORT-ROOT(SHR)互作特异性地诱导根内皮层木栓化,这一调控网络涉及多个MYB转录因子[31]。SHR通过提高根系ABA水平促进木栓化以响应胁迫,也可通过ABA非依赖途径诱导木栓化过程[32]
MYB39(suberman,SUB)是SHR/MYB36通路和ABA触发反应的共同下游枢纽,它直接激活FAR5表达,控制根木栓层的形成。MYB39在烟草叶片中瞬时表达导致异源木栓质基因被诱导,木栓质单体积累,进而形成异位木栓层[33]MYB39在根内皮层的特异性过表达显著增强了根系内皮层木栓化程度[32]。此外,MYB39还影响苯丙烷、木质素等转录网络,对根系吸收能力有实质性影响。
MYB41是木栓化正调控转录因子,在拟南芥和烟草中过表达MYB41导致叶表皮形成异位木栓层[34]。根内皮层特异过表达MYB41增加了根系木栓化,使木栓质在靠近根尖区域沉积[35]。由于功能冗余,myb41突变体根系中木栓质并未完全消失[34-35]
近几年发现,越来越多的MYB家族成员参与根系木栓化调控。MYB107和MYB9在种皮中诱导脂肪族和芳香族木栓质单体的生物合成、运输以及聚合。其突变体种子中木栓质单体显著减少[36]。MYB53、MYB92、MYB93与MYB41同源性较高,其中MYB92是脂肪酸生物合成途径的一个激活因子,在烟草中过表达可诱导脂肪酸生物合成基因并增加木栓质单体含量[37]。对MYB53、MYB92、MYB93进行的功能验证发现它们拥有与MYB41相似的功能,其在内皮层特异过表达均能促进木栓质的生物合成。四突变体myb41-myb53-myb92-myb93显示出木栓化强烈抑制的表型,但仍没有完全抑制木栓化,可见木栓化的转录调控是一个十分复杂的过程[35]。此外,AtMYB68、AtMYB74和AtMYB84直接结合下游功能基因的启动子,在SHR介导的木栓化调控网络中发挥关键作用,并作为ABA信号转导和内皮层分化的相互作用枢纽[31]
除了拟南芥,其他物种中也发现了调控木栓化的MYB转录因子。例如,猕猴桃(Actinidia chinensis)中的AchnABF2、AchnMYB4、AchnMYB41和AchnMYB107与AchnFHT相互作用,AchnFHT通过抑制AchnMYB4和促进AchnABF2AchnMYB41AchnMYB107的表达来协调木栓质单体的生物合成。外源ABA的添加可以进一步促进这些基因的表达,促进木栓质单体的合成,但也抑制了AchnMYB4的表达[38]。甘蔗(Saccharum ofcinarum)中ShMYB78诱导木栓质相关基因的表达,是木栓质生物合成和沉积的激活因子,在烟草叶片中瞬时表达ShMYB78诱导了木栓质的异位沉积[39]
苹果(Malus domestica)中鉴定的MdMYB68与许多已知的关键木栓质生物合成基因共表达,其过表达能够触发整个木栓质生物合成通路的表达[40]。此外,黄褐色苹果皮中MdMYB93影响木栓质的单体前体的合成、运输、聚合和最终沉积[41]。另一个转录因子MdMYB52在烟草中表达,导致苯丙烷、木质素、木栓质生物合成、细胞壁修饰和衰老相关的基因表达增加,表明MdMYB52在木栓质生物合成中起关键的调控作用[42]。梨(Pyrus pyrifolia)果实中的PpyMYB144通过调控木栓质含量来控制梨果皮赤褐色表型,农杆菌介导的PpyMYB144在梨果实中的瞬时表达诱导了脂肪族木栓质的沉积[43]
StMYB102和StMYB74对各种非生物和生物刺激具有转录反应,在马铃薯块茎的伤口处作为重要的调节因子影响伤口愈合和木栓质沉积。研究表明,虽然StMYB74本身并不是木栓质生物合成的直接调控因子,但是在木栓质生物合成的分级转录级联中发挥作用[44]。二穗短柄草(Brachypodium distachyon)中克隆的BdMYB92在根内大量表达且受胁迫所诱导,与木栓质合成基因BdFAR4启动子相互作用,直接调控BdFAR4的转录,推测也与其他木栓质生物合成基因起相互调控的作用[45]。拟南芥AtMYB68的同源蛋白QsMYB1在栓皮栎木栓化的周皮中高度表达,其序列中含有与苯丙烷途径相关的顺式作用元件,可能参与调控木栓化过程[46]。葡萄(Vitis vinifera)中与AtMYB41同源的基因VviMYB41VviMYB41-like在缺水条件下也促进了木栓质单体的生物合成和沉积[47]
2.1.2 负调控因子
MYB6、MYB122和MYB70是木栓化的负调控因子。MYB6抑制了MYB52和MYB93这2种木栓化正调控因子,MYB122则是抑制了MYB9和MYB39,二者过表达表现内皮层木栓化轻微延迟和减少,并且2个MYB调控因子可能参与了木质素和木栓质之间的平衡[31]。MYB70负调控过氧化物酶编码基因和木栓质生物合成相关基因的表达调节根系发育,减少木栓质的沉积,影响养分吸收[48]
在猕猴桃中,AchnMYB4作为木栓化的负调控因子,受外源ABA抑制,通过直接结合木栓质的生物合成基因如AchnCYP86A1AchnFAR的启动子抑制它们的转录,从而减少木栓质的积累[38]
2.2 NAC转录因子
NAC是植物特异性转录因子家族之一,广泛存在于陆地植物中,调节植物的生长发育、激素信号传导、叶片衰老、器官发育和环境响应等过程[49]。NAC转录因子也参与木栓质的沉积(表1)。其中拟南芥的ANAC046主要表达于根内外皮层,受叶片损伤诱导,其过表达导致根和叶中木栓质生物合成基因的表达增加,进而引起脂肪酸含量的升高,尤其是C24和C26的极长链脂肪酸(VLCFA)以及甾醇含量的显著升高,根木栓化程度增加,因此NAC046可能在木栓质的生物合成和沉积中发挥作用[49]。ANAC058参与调节拟南芥幼根中内皮层木栓质的沉积,其敲除和敲弱的突变体均表现出幼根及成熟根根尖木栓质沉积的延迟,而过表达则导致异位木栓质沉积。然而,突变体的整个根系统中木栓质的总量并未受到影响,所以ANAC058是否直接调节木栓质相关基因还尚不清楚[50]。苹果皮中的MdNAC74和MdNAC142能够激活参与木栓质生物合成基因的启动子,分别通过与FAR3和KSC2互作诱导木栓质的产生,并激活脂肪醇合成酶和脂肪酸延伸酶的转录[51]。在黄麻(Corchorus capsularis)中的CcNAC1通过调控KCS基因影响角质和木栓质的合成,在干旱胁迫下大量表达,过表达CcNAC1不仅加速了黄麻的生长和开花,还提高了耐旱性[52]。水稻中OsNAC2可直接促进OsNCED3的表达,通过增加ABA的含量间接地影响木栓质的合成[53]
马铃薯中的StNAC103是第一个被确定的负调控木栓质和蜡质沉积的调控因子,能抑制脂肪族和烷烃单体的合成。StNAC103在块茎周皮诱导表达,沉默该基因后木栓质和蜡质生物合成和运输相关的关键基因上调[54]。此外,苹果皮中MdNAC139和MdNAC58能与MdNAC74和MdNAC142形成异源二聚体并抑制MdNAC74和MdNAC142的功能,是木栓化的负调控因子[51]
2.3 WRKY转录因子
WRKY转录因子也在木栓质沉积中发挥作用(表1)。马铃薯中StWRKY1与羟基肉桂酸酰胺(HCAA)生物合成基因启动子直接结合,影响木栓质的沉积[55]。WRKY9通过调节细胞色素P450基因CYP94B3CYP86B1的表达,WRKY33也是调节CYP94B1的因子,影响拟南芥木栓质沉积。atwrky9突变体表现为抑制AtCYP94B3AtCYP86B1的表达,木栓质积累减少[17]wrky33突变体表现出木栓质合成减少[16]
1植物中木栓质生物合成相关转录因子
Table1Transcription factors related to suberin biosynthesis in plants
续表1 Continued table 1
3 木栓质对环境的响应
木栓质的沉积受多种环境因子调控,植物通过调节木栓质生物合成和降解以适应环境变化。
3.1 干旱胁迫
不同耐旱程度的植物其木栓质的含量不同。相比于中生植物,旱生植物如四合木(Tetraena mongolica)和霸王(Zygophyllum xanthoxylum)中有更多木栓质单体的形成[57],老芒麦(Elymus sibiricus)抗旱种质要比干旱敏感种质具有更高的木栓质单体含量[58]。由于与发育进程密切相关,木栓化程度会随着根龄增加而增加,老根部位的木栓化更完整,而干旱缺水会诱导幼嫩根组织提前木栓化[59]。大麦的根在渗透胁迫下木栓层增厚,并使质外体途径运输的阻力增大[60]。长期干旱也会增加拟南芥根木栓质的含量,但不会改变其明暗相间的片层结构[61]
木栓质的沉积影响水分利用效率和蒸腾速率,在植物耐旱性中发挥重要作用。拟南芥esb1(木栓质增强型1)突变体比野生型具有更高的水分利用效率和更低的蒸腾速率,这与木栓质沉积增加和根中异位木质化有关[62]cyp86a1突变体、cyp86a1-1cyp86b1-1双突变体、abcg2-1abcg6-1abcg20-1三重突变体中木栓质都大量减少,导致根系对水的渗透性增强,水分流失增加[6163]。在番茄(Solanum lycopersicum)中木栓质主要存在于外皮层,而ASFT和MYB92调节缺水条件下木栓质合成,其基因敲除导致木栓质含量几乎消失,揭示了番茄外皮层木栓质在其应对干旱环境中的重要性[64]。此外,相比于干旱敏感种质,耐旱老芒麦种质的凯氏带和木栓层形成更早,这能帮助其抵御干旱胁迫下水和矿质营养的流失,提高抗旱性[58]。大量与木栓质及脂肪酸生物合成相关的基因在旱生植物中表达[57]。濒危物种疏花水柏枝(Myricaria laxiflora)具有由内皮层、增厚的木质化细胞壁、木栓质、角质层和通气组织组成的质外体屏障,可以更好地应对干旱等极端生存环境[65]。总体而言,多种旱生植物都拥有类似的增厚的木栓化细胞壁,这对于它们在干旱环境下保持生长和发育至关重要[66]
3.2 涝胁迫
尽管关于植物对涝胁迫响应的研究相对较少,但也有许多研究阐述了植物抗涝的机制。与干旱胁迫和盐胁迫类似,涝胁迫也可以诱导水稻中木栓质沉积[67]。夏栎(Quercus robur)在涝胁迫下,木栓质生物合成相关的基因发生上调[68]。在缺氧的营养液中生长的玉米其不定根的外表皮上有更多的木质素和木栓质沉积。由于不定根中较大的通气组织和较强的根系泌氧(ROL)屏障,其拥有更强的从茎基部向根尖输送氧的能力[69]。二穗短柄草生长在停滞的缺氧条件下,木栓质在其内皮层中积累,并且不增加新根的数量[67]。此外,30 d的涝胁迫促进了高山杜鹃(Rhododendron delavayi)苯丙烷生物合成、脂肪酸代谢、脂肪酸生物合成、脂肪酸延伸以及角质、木栓质、蜡质等生物合成途径[70]
涝胁迫是由于过量的水限制了气体扩散并抑制植物生长,严重时导致根部死亡和植物衰退。而木质素和木栓质在外表皮细胞壁内的沉积成为ROL的屏障[71]。ROL屏障通过促进氧向根分生组织扩散,最大限度地减少了氧气向周围环境的散失,从而提高了氧气在根部的有效性,被认为是一种重要的涝渍适应策略[72]。此外,根系的ROL屏障会通过根氧化过程影响根际土壤中重金属的流动性,阻止来自土壤的毒素渗透到根部[73]。一些湿地植物在根部形成较强的质外体屏障,可以有效地减少通气组织的径向氧损失并防止有毒化合物进入根部[74]
3.3 盐胁迫
盐对木栓质的合成也有显著影响,在拟南芥中,盐处理主要通过ABA信号增加内皮层的木栓化[8]。短期盐胁迫下,木栓质生物合成酶的mRNA水平增加,随后木栓化程度增强[75]。在耐盐水稻品种‘Pokkali’中,盐胁迫主要增强了内皮层中链长为C16,18,24,26和28的脂肪族木栓质单体的合成[75]。此外,芳香族单体也在盐胁迫下增加,在大麦中,随着盐浓度增加,根尖处的木栓化显著增强,C18∶1双羧酸、C18和C24 ω-羟基酸在盐胁迫下成倍增长[76]。盐敏感的橄榄树(Olea europaea)在盐胁迫后内皮层木栓化更靠近根尖,并减缓了枝条的生长[77]。在盐胁迫下,内皮层木栓化程度随盐浓度增加而增强,并且随着盐胁迫持续而呈现动态变化。盐浓度越高,凯氏带和木栓层发育越快,一方面在更靠近根尖的部位形成;另一方面在根中段的质外体屏障中由不连续的“补丁状”逐渐形成连续的疏水屏障[75]
盐胁迫还影响木栓质的转录调控。盐胁迫下甜高粱中酰基转移酶SbHHT1的编码基因及与木栓质生物合成相关基因ASFTESB1FHT均显著上调。此外,参与脂肪酸合成的P450家族成员CYP86A1CYP94A1CYP194A2CYP94A5CYP94B1也在盐胁迫下被诱导表达[1661]。调控长链单体形成的DAISY/KCS2和调控脂肪醇单体的FAR1FAR4FAR5等基因都在盐和渗透胁迫下大量表达[78]。木栓质合成的关键转录因子AtMYB41的启动子在ABA和NaCl等胁迫信号下被激活,包括MYB41在内的多个调控木栓质沉积的MYB转录因子在不同的细胞类型和系统发育上响应盐胁迫[3479]
木栓质沉积在植物根系中形成屏障,限制水分和矿质营养的运输,防止Na+和Cl-装载到木质部,赋予植物一定的耐盐能力[80]。这一机制已在水稻、棉花和玉米等甜土植物及一些盐生植物中得到证实[757781-82]。在盐胁迫条件下,耐盐型水稻比盐敏感型水稻的木栓化程度更高,有效地减少了Na+的旁流(通过质外体途径流入的Na+),从而提高了存活率[7577]。水稻因木栓质沉积更多而比玉米具有更低的质外体透水性[83]。另外,野生稻(Oryza coarctata)有加强的质外体屏障,但其根茎节间组织的木栓化程度会随着盐浓度增加而减少。拟南芥木栓质合成缺陷突变体cyp86a1的研究揭示,根内皮层木栓质能限制Na+通过跨细胞途径而非质外体途径流入维管组织,同时减少水分和K+向土壤回流,赋予了植物耐盐性[63]。过表达脐橙CsKCS6基因的拟南芥在盐胁迫下表现出更长的根和更高的存活率[84]。木栓质的沉积在毒性离子外排中发挥关键作用,是培育耐盐作物的重要途径[85]。甜高粱(Sorghum bicolor)的耐盐性主要来自根对盐的外排能力,表达SbCAPS4的拟南芥增强根质外体屏障,改善根系Na+外排,降低茎Na+浓度,减少ROS的产生,显著提高了转基因拟南芥对盐胁迫的耐受性[86]。盐生植物,特别是水生盐生植物和一些潜水植物通过根系过滤机制排除过量盐分,其根中内皮层的凯氏带和木栓质也被证明参与了排盐途径[57]
3.4 温度胁迫
环境温度也影响植物木栓质的沉积,冷胁迫和热胁迫均会增加木栓质沉积。低温会引起细胞壁增厚,冬季黑麦为了适应寒冷的环境,维管束和叶片表面的细胞壁增厚,不仅促进了脂质的合成,还增加了木栓质的沉积[87]。高温胁迫促进不同组织细胞壁分化,如马铃薯块茎会在高温胁迫下形成更致密的周皮,并增强木栓质生物合成基因表达,提高木栓化程度[88]。酚类物质参与作物的冷应激反应,以木栓质或木质素形式并入细胞壁。苹果和土豆遭受冷冻后,增加了PAL的合成从而促进酚类物质产生[89]。白云杉(Picea glauca)的根也会在低温下加速分化[90]。此外,有研究者发现,晚熟葡萄品种因缺少足够的木栓质沉积而易遭受霜冻损害[91]。冷胁迫、盐胁迫、干旱胁迫、PEG、机械损伤都大幅增加了二穗短柄草根木栓质单体合成中关键BdFAR4基因的表达水平[92]
木栓质的沉积对提升作物在低温下的抵抗力至关重要,能够维持屏障内组织的水分状况。木栓质和凯氏带形成的屏障还可以有效地减少细胞外冻结而引起的蒸散,降低缺水带来的损伤,提高植物的抗冻性[93]
3.5 重金属胁迫
在重金属胁迫下,可以观察到木栓质沉积的增加。短期镉胁迫能加快小麦根系内皮层细胞的分化,并抑制植物将镉运输到茎部,同时与木栓质生物合成相关的基因如TaPALTaGPAT3TaLRRTaABCG50都发生了上调[94]。在盐芥(Thellungiella salsuginea)中,不同浓度的镉导致木栓质发生不同变化,50 μmol/L胁迫下木栓质含量有所升高,而100 μmol/L胁迫下并未检测到木栓质含量明显变化,但2个浓度都促进了木栓质代谢相关基因的表达[95]。铬(Cr)影响拟南芥的种子活力,抑制其萌发,种皮中的木栓质、角质和花青素都在保护种皮逃避铬毒性方面发挥作用[96]cyb86b1-1asft-1等突变体就因种皮中木栓质含量较低对铬高度敏感[97]。同样,锶(Sr)也引起番茄根系成熟区木栓质相关基因的高表达,表明木栓质的合成也可以由锶诱导[98]。红树植物木榄(Bruguiera gymnorrhiza)和红海兰(Rhizophora stylosa)在遭受金属铅(Pb)、锌(Zn)和铜(Cu)的胁迫时也表现出木栓质的沉积增加,表明木栓质沉积是对金属毒性的防御反应[73]
大多数重金属阳离子被吸收后都会沿着胞外途径向中柱组织径向运输,而根内皮层木栓质的沉积可以起到过滤作用,有效地阻止植物过度积累这些重金属[99]。研究表明,红树植物对金属耐受性与植物体内木质素和木栓质的含量呈正相关[73]。2种红树植物白骨壤和红海兰因其具有由凯氏带和木栓层组成的质外体屏障,表现出较高的重金属耐受性,在镉胁迫下,根部镉的积累量最多,而地上部分如茎和叶的镉浓度则相对较低[100]。比较铅胁迫时发现,红海兰由于具有更高程度的木质化和木栓化,能有效减少铅的进入和积累[101]
3.6 营养胁迫
植物对养分的吸收具有特异性,不同的营养条件会对根内皮层和外皮层的木栓化产生不同的影响。在拟南芥中,内皮层木栓化在缺钾和缺硫胁迫下增强,而在缺铁、缺锰、缺锌的胁迫下延迟[8102]。水稻根系在高NH+4环境下木栓化和木质化增强,屏障功能相应增强,降低了溶质的渗透性[103]。缺镁条件诱导玉米外皮层木栓化增强[104]。相较于营养富集的土壤,贫瘠的营养条件促进了3种湿地苔草物种胀囊薹草(Carex vesicaria)、灰株苔草(Carex rostrata)和长叶薹草(Carex gracilis)的外皮层分化[105]。蓖麻(Ricinus communis)和拟南芥在缺乏养分的土壤里都会增加木栓质的生物合成,但缺乏NO-3的蓖麻根延迟了外皮层木栓化[883]。营养缺乏显著加快大麦种子根和侧根的内皮层分化,导致质外体屏障向根尖处积累,降低根系导水率,调节根部吸水量以增加根与芽的表面积比[106]。大麦在轻度缺锰的情况下,其内皮层木栓化增强,但在胁迫后补充锰,木栓化就会恢复到正常水平[107]。低氮、低磷处理的玉米,其外皮层分化增强,而低钾处理的植株却表现为木栓化延迟,表明氮、磷和钾的缺乏对内皮层和外皮层的分化有着不同的调节作用[108]。通过沉默马铃薯根中木栓质生物合成基因CYP86A33的表达,导致木栓质减少了61%,进而引起矿质营养浓度发生改变,含水量降低,最终损害植物生长[109]
木栓质形成的质外体屏障还能有效地调节植物体内的营养平衡,不仅抑制转运蛋白防止吸收重金属等有害物,还能调节径向水流和养分运输[110]。K+通道基因突变和介质中K缺乏均增加了木栓化,表明增强的木栓化是对K缺乏的适应性反应,有助于植物在限制条件下维持K稳态[8]。增强的木栓化则是提供一种防止吸收的养分泄漏的策略,是植物对动态环境和先后供应养分的响应[111]。木栓质含量的增加能够增强植物对缺乏营养离子的吸收和运输,这一过程在维持根部离子稳态和离子易位方面起到了重要作用[107]
4 展望
挖掘木栓质各方面调控因子对理解其在植物生长和逆境胁迫中的作用至关重要,对作物分子设计育种具有重要意义。目前的研究表明,木栓质的调控机制非常复杂,调控网络的成员以及它们之间的相互作用尚未明确,研究依然停留在极为有限的范围内。近年来,研究者发现木栓质的生物合成受多种转录因子和环境因素调控,参与作物的生长发育及胁迫响应。文中提到的MYB、NAC基因家族只是众多转录因子家族中的一部分,由于基因数量过于庞大,且大部分功能和调控网络的研究集中在模式植物拟南芥。然而,不同物种间木栓质的组分和沉积特征存在显著差异[60],笔者最近的研究表明,一种湿地盐生植物的根系木栓化对涝胁迫的响应与拟南芥、水稻等模式植物不同。因此,拟南芥中发现的相关基因在其他植物,尤其是禾本科作物中的功能仍需进一步验证。
尽管已鉴定出许多调控木栓质的酶和转录因子,但大多数是正调控因子,其中不同的酶只调控木栓质某一种或几种单体的合成,但现有转录因子存在功能冗余,尚未发现1个或多个基因突变导致木栓质完全缺失的突变体。此外,木栓质与凯氏带的复杂关系尚未明确,一些木栓质缺陷突变体会通过增强凯氏带进行补偿,反之亦然。虽然这反映了木栓质的重要性,但也限制了其精细功能的研究及在分子设计育种中的应用。因此,未来需要挖掘更多关键的木栓质调控因子及负调控因子,并建立更完善的调控网络,同时加大对转录后调控、翻译后修饰、microRNA等方面的研究。木栓质单体的运输方式、它们如何在大分子水平上组装而形成复杂的复合聚酯,目前还不得而知,更为详细的调控网络仍有待挖掘。
木栓质的形成受多种环境因素影响,不同植物的根系结构具有差异,内皮层、外皮层和周皮的木栓质在应对环境胁迫时的功能是否一致尚不明确;主根和侧根的木栓质在胁迫下的发育模式也不明确;植物在响应涝胁迫时不定根和种子根木栓质分别是如何变化的尚无定论。因此,深入研究植物如何在不同环境下通过调控不同根结构中木栓质的形成,以平衡生长与抗性也是研究的重要方向。
1木栓质生物合成通路图
Fig.1Schematic diagram of suberin biosynthetic pathways
1植物中木栓质生物合成相关转录因子
Table1Transcription factors related to suberin biosynthesis in plants
WOOLFSON K N. Suberin biosynthesis and deposition in the wound-healing potato(Solanum tuberosum L.)tuber model[D]. London: The University of Western Ontario,2018.
GRAÇA J. Suberin: The biopolyester at the frontier of plants[J]. Frontiers in Chemistry,2015,3:62.
VISHWANATH S J, DELUDE C, DOMERGUE F,et al. Suberin: Biosynthesis,regulation,and polymer assembly of a protective extracellular barrier[J]. Plant Cell Reports,2015,34(4):573-586.
KOLATTUKUDY P E. Polyesters in higher plants[M]//Advances in biochemical engineering/biotechnology. Heidelberg: Springer Berlin Heidelberg,2001.
FRANKE R, SCHREIBER L. Suberin: A biopolyester forming apoplastic plant interfaces[J]. Current Opinion in Plant Biology,2007,10(3):252-259.
FRANKE R B, DOMBRINK I, SCHREIBER L. Suberin goes genomics: Use of a short living plant to investigate a long lasting polymer[J]. Frontiers in Plant Science,2012,3:4.
GRÜNHOFER P, GUO Y Y, LI R L,et al. Hydroponic cultivation conditions allowing the reproducible investigation of poplar root suberization and water transport[J]. Plant Methods,2021,17(1):129.
BARBERON M, VERMEER J E M, DE BELLIS D,et al. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation[J]. Cell,2016,164(3):447-459.
WOOLFSON K N, ESFANDIARI M, BERNARDS M A. Suberin biosynthesis,assembly,and regulation[J]. Plants,2022,11(4):555.
GELDNER N. The endodermis[J]. Annual Review of Plant Biology,2013,64:531-558.
LI-BEISSON Y, SHORROSH B, BEISSON F,et al. Acyl-lipid metabolism[J]. The Arabidopsis Book,2013,11:e0161.
TODD J, POST-BEITTENMILLER D, JAWORSKI J G. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana[J]. The Plant Journal,1999,17(2):119-130.
FRANKE R, HÖFER R, BRIESEN I,et al. The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds[J]. The Plant Journal,2009,57(1):80-95.
HÖFER R, BRIESEN I, BECK M,et al. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis[J]. Journal of Experimental Botany,2008,59(9):2347-2360.
COMPAGNON V, DIEHL P, BENVENISTE I,et al. CYP86B1 is required for very long chain ω-hydroxyacid and α,ω-dicarboxylic acid synthesis in root and seed suberin polyester[J]. Plant Physiology,2009,150(4):1831-1843.
KRISHNAMURTHY P, VISHAL B, HO W J,et al. Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance[J]. Plant Physiology,2020,184(4):2199-2215.
KRISHNAMURTHY P, VISHAL B, BHAL A,et al. WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1,leading to increased root suberin and salt tolerance in Arabidopsis[J]. Physiologia Plantarum,2021,172(3):1673-1687.
DOMERGUE F, VISHWANATH S J, JOUBÈS J,et al. Three Arabidopsis fatty acyl-coenzyme a reductases, FAR1, FAR4,and FAR5,generate primary fatty alcohols associated with suberin deposition[J]. Plant Physiology,2010,153(4):1539-1554.
ZHAO H Y, KOSMA D K, LÜ S Y. Functional role of long-chain acyl-CoA synthetases in plant development and stress responses[J]. Frontiers in Plant Science,2021,12:640996.
DOMERGUE F, KOSMA D K. Occurrence and biosynthesis of alkyl hydroxycinnamates in plant lipid barriers[J]. Plants,2017,6(3):25.
MOLINA I, KOSMA D. Role of HXXXD-motif/BAHD acyltransferases in the biosynthesis of extracellular lipids[J]. Plant Cell Reports,2015,34(4):587-601.
PHILIPPE G, SØRENSEN I, JIAO C,et al. Cutin and suberin: Assembly and origins of specialized lipidic cell wall scaffolds[J]. Current Opinion in Plant Biology,2020,55:11-20.
HOFMANN N R. Supply route: ABCG transporters act in the construction of suberin barriers[J]. The Plant Cell,2014,26(9):3471.
LEE S B, SUH M C. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein 15 affects seed coat permeability in Arabidopsis[J]. The Plant Journal,2018,96(6):1206-1217.
AKHIYAROVA G R, IVANOV R S, IVANOV I I,et al. Effects of salinity and abscisic acid on lipid transfer protein accumulation,suberin deposition and hydraulic conductance in pea roots[J]. Membranes,2021,11(10):762.
DEEKEN R, SAUPE S, KLINKENBERG J,et al. The nonspecific lipid transfer protein AtLtpI-4 is involved in suberin formation of Arabidopsis thaliana crown galls[J]. Plant Physiology,2016,172(3):1911-1927.
DEBOLT S, SCHEIBLE W R, SCHRICK K,et al. Mutations in UDP-glucose: Sterol glucosyltransferase in Arabidopsis cause transparent testa phenotype and suberization defect in seeds[J]. Plant Physiology,2009,151(1):78-87.
ANGELINI R, TISI A, REA G,et al. Involvement of polyamine oxidase in wound healing[J]. Plant Physiology,2008,146(1):162-177.
STRACKE R, WERBER M, WEISSHAAR B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Current Opinion in Plant Biology,2001,4(5):447-456.
KAMIYA T, BORGHI M, WANG P,et al. The MYB36 transcription factor orchestrates Casparian strip formation[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(33):10533-10538.
XU H M, LIU P, WANG C H,et al. Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response[J]. Plant Physiology,2022,190(2):1165-1181.
WANG C H, WANG H, LI P X,et al. Developmental programs interact with abscisic acid to coordinate root suberization in Arabidopsis[J]. The Plant Journal,2020,104(1):241-251.
COHEN H, FEDYUK V, WANG C H,et al. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis[J]. The Plant Journal,2020,102(3):431-447.
KOSMA D K, MURMU J, RAZEQ F M,et al. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types[J]. The Plant Journal,2014,80(2):216-229.
SHUKLA V, HAN J P, CLÉARD F,et al. Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(39):e2101730118.
LASHBROOKE J, COHEN H, LEVY-SAMOCHA D,et al. MYB107 and MYB9 homologs regulate suberin deposition in angiosperms[J]. The Plant Cell,2016,28(9):2097-2116.
TO A, JOUBÈS J, THUEUX J,et al. AtMYB92 enhances fatty acid synthesis and suberin deposition in leaves of Nicotiana benthamiana[J]. The Plant Journal,2020,103(2):660-676.
WEI X P, LU W J, MAO L C,et al. ABF2 and MYB transcription factors regulate feruloyl transferase FHT involved in ABA-mediated wound suberization of kiwifruit[J]. Journal of Experimental Botany,2020,71(1):305-317.
FIGUEIREDO R, PORTILLA LLERENA J P, KIYOTA E,et al. The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana[J]. Plant Molecular Biology,2020,104(4/5):411-427.
XU X, GUERRIERO G, DOMERGUE F,et al. Characterization of MdMYB68,a suberin master regulator in russeted apples[J]. Frontiers in Plant Science,2023,14:1143961.
LEGAY S, GUERRIERO G, ANDRÉ C,et al. MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins[J]. New Phytologist,2016,212(4):977-991.
XU X, GUERRIERO G, BERNI R,et al. MdMYB52 regulates lignin biosynthesis upon the suberization process in apple[J]. Frontiers in Plant Science,2022,13:1039014.
ZHANG J, LIU Z Y, ZHANG Y F,et al. PpyMYB144 transcriptionally regulates pear fruit skin russeting by activating the cytochrome P450 gene PpyCYP86B1[J]. Planta,2023,257(4):69.
WAHRENBURG Z, BENESCH E, LOWE C,et al. Transcriptional regulation of wound suberin deposition in potato cultivars with differential wound healing capacity[J]. The Plant Journal,2021,107(1):77-99.
呼宁, 何兆峰, 朱雨遥, 等. 二穗短柄草根部木栓质调控基因BdMYB92的克隆及功能研究[J]. 西北植物学报,2023,43(3):359-365. HU N, HE Z F, ZHU Y Y,et al. Cloning and functional research of BdMYB92,which regulates the suberin biosynthesis in roots of Brachypodium distachyon[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(3):359-365.
ALMEIDA T, MENÉNDEZ E, CAPOTE T,et al. Molecular characterization of Quercus suber MYB1,a transcription factor up-regulated in cork tissues[J]. Journal of Plant Physiology,2013,170(2):172-178.
ZHANGE L, MERLIN I, PASCAL S,et al. VviMYB41 orthologs contribute to the water deficit induced suberization of grapevine fine roots[J/OL]. Cold Spring Harbor Laboratory,2020[2024-04-23].https://www.xueshufan.com/publication/3023357947.
WAN J P, WANG R L, ZHANG P,et al. MYB70 modulates seed germination and root system development in Arabidopsis[J].iScience,2021,24(11):103228.
MAHMOOD K, ZEISLER-DIEHL V V, SCHREIBER L,et al. Overexpression of ANAC046 promotes suberin biosynthesis in roots of Arabidopsis thaliana[J]. International Journal of Molecular Sciences,2019,20(24):6117.
MARKUS K. Characterization of the transcription factor ANAC058 and its role in suberin regulation[D]. Bonn: University of Bonn,2018.
GORRIE R. Functional characterisation of transcription factors regulating russet in apples[D]. Auckland: The University of Auckland, New Zealand,2023.
ZHANG G Y, HUANG S Q, ZHANG C,et al. Overexpression of CcNAC1 gene promotes early flowering and enhances drought tolerance of jute(Corchorus capsularis L.)[J]. Protoplasma,2021,258(2):337-345.
MAO C J, LU S C, LV B,et al. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiology,2017,174(3):1747-1763.
VERDAGUER R, SOLER M, SERRA O,et al. Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin[J]. Journal of Experimental Botany,2016,67(18):5415-5427.
YOGENDRA K N, KUMAR A, SARKAR K,et al. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato[J]. Journal of Experimental Botany,2015,66(22):7377-7389.
YU Y, GUO D D, MIN D H,et al. Foxtail millet MYB-like transcription factor SiMYB16 confers salt tolerance in transgenic rice by regulating phenylpropane pathway[J]. Plant Physiology and Biochemistry,2023,195:310-321.
ZHOU M Q, CHEN N M, ZOU Y L,et al. Comparative analysis of periderm suberin in stems and roots of Tetraena mongolica Maxim.and Zygophyllum xanthoxylum(Bunge)Engl[J]. Trees,2022,36(1):325-339.
LIU X, WANG P, AN Y P,et al. Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass Elymus sibiricus[J]. Frontiers in Plant Science,2022,13:1007494.
YIN H J, LI M Z, LI D D,et al. Transcriptome analysis reveals regulatory framework for salt and osmotic tolerance in a succulent xerophyte[J]. BMC Plant Biology,2019,19(1):88.
KRESZIES T, SHELLAKKUTTI N, OSTHOFF A,et al. Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: Analysis of chemical,transcriptomic and physiological responses[J]. New Phytologist,2019,221(1):180-194.
DE SILVA N D G, MURMU J, CHABOT D,et al. Root suberin plays important roles in reducing water loss and sodium uptake in Arabidopsis thaliana[J]. Metabolites,2021,11(11):735.
BAXTER I, HOSMANI P S, RUS A,et al. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis[J]. PLoS Genetics,2009,5(5):e1000492.
WANG P, WANG C M, GAO L,et al. Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na+ influx, K+ efflux and water backflow[J]. Plant and Soil,2020,448(1):603-620.
CANTÓ-PASTOR A, KAJALA K, SHAAR-MOSHE L,et al. A suberized exodermis is required for tomato drought tolerance[J]. Nature Plants,2024,10(1):118-130.
LI L B, WU D, ZHEN Q L,et al. Morphological structures and histochemistry of roots and shoots in Myricaria laxiflora(Tamaricaceae)[J]. Open Life Sciences,2021,16(1):455-463.
YANG C D, YANG X L, ZHANG X,et al. Anatomical structures of alligator weed(Alternanthera philoxeroides)suggest it is well adapted to the aquatic-terrestrial transition zone[J]. Flora,2019,253:27-34.
SHIONO K, YAMADA S. Waterlogging tolerance and capacity for oxygen transport in Brachypodium distachyon(Bd21)[J]. Plant Root,2014,8:5-12.
LE PROVOST G, LESUR I, LALANNE C,et al. Implication of the suberin pathway in adaptation to waterlogging and hypertrophied lenticels formation in pedunculate oak(Quercus robur L.)[J]. Tree Physiology,2016,36(11):1330-1342.
ABIKO T, KOTULA L, SHIONO K,et al. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize(Zea mays ssp.mays)[J]. Plant, Cell & Environment,2012,35(9):1618-1630.
ZHANG X M, DUAN S G, XIA Y,et al. Transcriptomic,physiological,and metabolomic response of an alpine plant, Rhododendron delavayi,to waterlogging stress and post-waterlogging recovery[J]. International Journal of Molecular Sciences,2023,24(13):10509.
SHIONO K, OGAWA S, YAMAZAKI S,et al. Contrasting dynamics of radial O-2 loss barrier induction and aerenchyma formation in rice roots of two lengths[J]. Annals of Botany,2011,107(1):89-99.
COLMER T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland,paddy and deep-water rice(Oryza sativa L.)[J]. Annals of Botany,2003,91(2):301-309.
CHENG H, JIANG Z Y, LIU Y,et al. Metal(Pb, Zn and Cu)uptake and tolerance by mangroves in relation to root anatomy and lignification/suberization[J]. Tree Physiology,2014,34(6):646-656.
EJIRI M, FUKAO T, MIYASHITA T,et al. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia[J]. Breeding Science,2021,71(1):40-50.
KRISHNAMURTHY P, RANATHUNGE K, FRANKE R,et al. The role of root apoplastic transport barriers in salt tolerance of rice(Oryza sativa L.)[J]. Planta,2009,230(1):119-134.
THANGAMANI P D. Effect of salt stress on apoplastic barriers in roots and leaves of two barley species[D]. Bonn: University of Bonn,2022.
KRISHNAMURTHY P, RANATHUNGE K, NAYAK S,et al. Root apoplastic barriers block Na+ transport to shoots in rice(Oryza sativa L.)[J]. Journal of Experimental Botany,2011,62(12):4215-4228.
SERRA O, GELDNER N. The making of suberin[J]. New Phytologist,2022,235(3):848-866.
ARTUR M A S, KAJALA K. Convergent evolution of gene regulatory networks underlying plant adaptations to dry environments[J]. Plant, Cell & Environment,2021,44(10):3211-3222.
NAWRATH C, SCHREIBER L, FRANKE R B,et al. Apoplastic diffusion barriers in Arabidopsis[J]. The Arabidopsis Book,2013,11:e0167.
REINHARDT D H, ROST T L. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots[J]. Environmental and Experimental Botany,1995,35(4):563-574.
KARAHARA I, IKEDA A, KONDO T,et al. Development of the Casparian strip in primary roots of maize under salt stress[J]. Planta,2004,219(1):41-47.
SCHREIBER L, FRANKE R, HARTMANN K D,et al. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice(Oryza sativa L.cv. IR64)and corn(Zea mays L.cv. Helix)[J]. Journal of Experimental Botany,2005,56(415):1427-1436.
GUO W F, WU Q, YANG L,et al. Ectopic expression of CsKCS6 from navel orange promotes the production of very-long-chain fatty acids(VLCFAs)and increases the abiotic stress tolerance of Arabidopsis thaliana[J]. Frontiers in Plant Science,2020,11:564656.
KRISHNAMURTHY P, JYOTHI-PRAKASH P A, QIN L,et al. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis[J]. Plant, Cell & Environment,2014,37(7):1656-1671.
WEI X C, LIU L L, LU C X,et al. SbCASP4 improves salt exclusion by enhancing the root apoplastic barrier[J]. Planta,2021,254(4):81.
GRIFFITH M, HUNER N P A, ESPELIE K E,et al. Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves[J]. Protoplasma,1985,125(1):53-64.
LEAL A R, BELO J, BEECKMAN T,et al. The combined effect of heat and osmotic stress on suberization of Arabidopsis roots[J]. Cells,2022,11(15):2341.
GRAHAM D, PATTERSON B D. Responses of plants to low,nonfreezing temperatures: Proteins,metabolism,and acclimation[J]. Annual Review of Plant Physiology,1982,33:347-372.
JOHNSON-FLANAGAN A M, OWENS J N. Peroxidase activity in relation to suberization and respiration in white spruce[Picea glauca(Moench)voss] seedling roots[J]. Plant Physiology,1985,79(1):103-107.
PAROSCHY J H, MEIERING A G, PETERSON R L,et al. Mechanical winter injury in grapevine trunks[J]. American Journal of Enology and Viticulture,1980,31(3):227-232.
WANG Y, XU J J, HE Z F,et al. BdFAR4,a root-specific fatty acyl-coenzyme a reductase,is involved in fatty alcohol synthesis of root suberin polyester in Brachypodium distachyon[J]. The Plant Journal,2021,106(5):1468-1483.
LI P H. Low temperature stress physiology[J]. Low Temperature Stress Physiology in Crops,2015,35(1):11-17.
WU J W, MOCK H P, GIEHL R F H,et al. Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants[J]. Journal of Hazardous Materials,2019,364(15):581-590.
陈宁美, 欧阳舒毓, 徐维烈, 等. 镉胁迫对盐芥根木栓质代谢的影响[J]. 河南农业科学,2018,47(10):105-110. CHEN N M, OUYANG S Y, XU W L,et al. Effect of cadmium stress on metabolism of root suberin in Thellungiella salsuginea[J]. Journal of Henan Agricultural Sciences,2018,47(10):105-110.
LUKINA A O, BOUTIN C, ROWLAND O,et al. Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants[J]. Chemosphere,2016,162:355-364.
DE SILVA N D G, BOUTIN C, LUKINA A O,et al. Seed coat suberin forms a barrier against chromium(Cr3+)during early seed germination in Arabidopsis thaliana[J]. Environmental and Experimental Botany,2021,191:104632.
NAGATA T. Effect of strontium on the growth,ion balance,and suberin induction in Solanum lycopersicum[J]. Plant Root,2019,13:9-14.
TAO Q, JUPA R, LUO J P,et al. The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii[J]. Journal of Experimental Botany,2017,68(3):739-751.
CHANG L F, FEI J, WANG Y S,et al. Comparative analysis of cd uptake and tolerance in two mangrove species(Avicennia marina and Rhizophora stylosa)with distinct apoplast barriers[J]. Plants,2023,12(22):3786.
CHENG H, WANG Y S, LIU Y,et al. Pb uptake and tolerance in the two selected mangroves with different root lignification and suberization[J]. Ecotoxicology,2015,24(7/8):1650-1658.
BARBERON M. The endodermis as a checkpoint for nutrients[J]. New Phytologist,2017,213(4):1604-1610.
RANATHUNGE K, SCHREIBER L, BI Y M,et al. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice(Oryza sativa L.)roots[J]. Planta,2016,243(1):231-249.
POZUELO J M, ESPELIE K E, KOLATTUKUDY P E. Magnesium deficiency results in increased suberization in endodermis and hypodermis of corn roots[J]. Plant Physiology,1984,74(2):256-260.
KONČALOVÁ H, KVĚT J, POKORNý J,et al. Effect of flooding with sewage water on three wetland sedges[J]. Wetlands Ecology and Management,1993,2(4):199-211.
ARMAND T, CULLEN M, BOIZIOT F,et al. Cortex cell hydraulic conductivity,endodermal apoplastic barriers and root hydraulics change in barley(Hordeum vulgare L.)in response to a low supply of N and P[J]. Annals of Botany,2019,124(6):1091-1107.
CHEN A L, HUSTED S, SALT D E,et al. The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostasis[J]. Plant Physiology,2019,181(2):729-742.
NAMYSLOV J, BAURIEDLOVÁ Z, JANOUŠKOVÁ J,et al. Exodermis and endodermis respond to nutrient deficiency in nutrient-specific and localized manner[J]. Plants,2020,9(2):201.
MONTELLS C, IGLESIAS J M, MARGUÍ GRABULOSA E,et al. A functional exodermal suberin is key for plant nutrition and growth in potato[J/OL]. Cold Spring Harbor Laboratory,2023[2024-04-23].https://doi.org/10.1101/2023.09.14.557788.
ROBE K, BARBERON M. Nutrient carriers at the heart of plant nutrition and sensing[J]. Current Opinion in Plant Biology,2023,74:102376.
VESTENAA M W, HUSTED S, MINUTELLO F,et al. Endodermal suberin deposition restricts potassium leakage from roots[J/OL]. Cold Spring Harbor Laboratory,2022[2024-04-23].https://doi.org/10.1101/2022.12.20.521223.