Molecular Cloning and Expression Analysis of CjMYB1 in Camellia japonica
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this study, based on sequence alignment analysis, we cloned the full-length CjMYB1 gene from wild Camellia japonica and performed gene expression analyses in Camellia varieties with different floral colors, which provided a fundamental basis for understanding the function of CjMYB1 underlying the floral color formation during flower development. The results showed that: (1) CjMYB1 gene (GenBank accession: OL347930) was successfully cloned. Its open reading frame length was 879 bp, encoding a 292 amino acids protein with relative molecular weight of 33.17 kD. CjMYB1 is found to be a R2R3-MYB transcription factor and is homologous to the subgroup 7 of Arabidopsis thaliana MYB gene family. (2) Quantitative real-time PCR analysis showed that CjMYB1 gene had the highest expression level in the floral buds of wild C. japonica, and had a relatively high expression level in sepals, petals, stamens and carpels, suggesting that CjMYB1 plays an important role of regulating the floral development. The expression level of CjMYB1 gene was higher in red Camellia varieties, but lower in pink, light yellow and white Camellia varieties, suggesting that CjMYB1 gene may play a key role in the anthocyanin synthesis pathway. (3) Subcellular localization experiments showed that CjMYB1 protein was located in the nucleus.

    Reference
    Related
    Cited by
Get Citation

HUANG Hu, MA Xianjin, LI Sijia, LI Xinlei, LI Jiyuan, YIN Hengfu. Molecular Cloning and Expression Analysis of CjMYB1 in Camellia japonica[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(3):381-389

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 15,2022
  • Published:
Article QR Code